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Introduction

Currently, around 70-80% of the clinically used implants are made from 

metallic materials (Ni et al., 2019), such as: 

The  research and development of biodegradable metals such as;

magnesium, iron, zinc and calcium for orthopaedic and cardiovascular

biomedical applications has emerged over the last decades, mainly due

to their superior mechanical  properties compared to biodegradable

polymers (Eli Aghion, 2018).

However, in vivo results of such metals indicated major complications,

such as corrosion performance and degradation rate, limiting  their

structural capabilities for biodegradable implant applications (E. Aghion

& Levy, 2010; Cheng et al., 2013).

Another  reason for new material and manufacturing developments is

the mismatch between a  metallic implant and bone, which results in

stress shielding and consequently  bone resorption and failure of the

implant (España et al., 2010).

With 3D printing it is possible to design and manufacture  complex

internal and external structures, which are otherwise not possible

with conventional manufacturing methods. Therefore, it is possible to

control the implant’s porosity and mechanical properties and ultimately

reduce the effect of stress shielding between bone and implant.

Stainless steel

Cobalt chromium alloys

Titanium alloys

Nitinol

Tantalum

Niobium

The use of biomaterials for implants
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Abstract

In the design process of medical implants, the

choice of the manufacturing material is essential to

meet safety requirements, biocompatibility and

sterilization requirements. This document contains

an overview of suitable 3D printed bio-metals in the

orthopedic field.

This report includes the mechanical properties like

Young’s  modulus, elongation and tensile and yield

strength.

The created bio-metals database can potentially be

used as a guideline for the design and

manufacturing of a variety of 3D printed orthopedic

implants and is an  important step in the design

process of Permanent 3D-Printed implants,

the  design of spinal implants, but also as an input

for optimised design of implants.
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3D Printing is a very  promising technique for the

mass production of patient-specific medical  implants.

There are several Additive Manufacturing (AM)

processes available for printing bio-metals

for  biomedical applications, including liquid state

processing, solid processing,  electro depositioning

and vapour depositioning. AM processes are affected

by a  large group of process parameters such as;

power, scan speed, scan strategy, hatch spacing and

layer height. Furthermore, the powder choice is also

essential in the interaction between the laser or

electron beam and the powder bed

concerning  absorptivity, physical properties, particle

size and shape. Also, the heat dissipation during the

printing process is likely to affect the properties of the

finished product.

Currently, the spot size for laser and electron

beams is 50-100 µm and 200 - 400 µm with a suitable

powder size of 20 – 50 µm and 50  – 100 µm,

respectively (Qin et al., 2019). Layer thickness will

vary between 20 – 80 µm and 100 µm for Laser Print

Bed Fusion (L-PBF) and Electron Beam Print Bed

Fusion  (EB-PBF) applications resulting in a higher

accuracy for L-PBF while vacuum  used in EB-PBF

avoids impurities during the process (Qin et al.,

2019). 

A summary of  the current available AM techniques

including their advantages and limitations can  be

found in Table 1 (Ni et al., 2019).

2. PRINTING 
TECHNIQUES



Name
Applicable

Metals
Processing parameters Advantages Limitations

Selective Laser

Sintering (SLS)

Titanium alloys,

cobalt,

chromium,

stainless steel,

nitinol

Laser sintering

Powder

Inert environment

CO2 laser

Uni,- and bidirectional fills

Great amount of materials

High utilization

No support requirements

Postprocessing

required

Precision limited by

particle size

Selective Laser

Melting (SLM)
Metal alloys

Laser melting

Powder (10-45 µm)

Inert environment

Nd-YAG / Fiber laser

Uni,- and bidirectional fills

Ability to tune process

properties during printing

Relatively low direct costs

Comprehensive

functionality

Good mechanical

properties and surface

roughness

Expensive

Relatively slow printing

speed

Acute size restrictions

Laser Direct Metal

Deposition (LDMD)
Metal alloys

Laser melting

Powder (20-200 µm)

Inert environment

Nd-YAG / Fiber laser

Uni,- and bidirectional fills

Local heat input

Low distortion

Fabrication of near net-

shaped parts

Fabrication of functional

gradient materials and parts

High capital costs

Selective Electron

Beam Melting

(SEBM)

Metal alloys

Electron beam melting

Powder 45 - 106 µm)

Vacuum chamber with small

amount of helium

Uni, and bidirectional fills

High density

High product strength

Less impurity

Fabrication of brittle

materials

Requires vacuum

environment

Requires

postprocessing

Expensive equipment

 

Laser Induced

Forward Transfer

(LIFT)

Chromium,

Tungsten, Gold,

Nickel,

Aluminium

Pulse laser/layer

Very small-scale part

processing

Operation without vacuum

environment or cleanroom

Wide range of materials

High accuracy

Small-batch production

Small size

Thin layers

Weak constructional

support

Atomic Diffusion

Additive

Manufacturing

(ADAM)

Sinterable metal

powder, such as

stainless steel, ti

alloys

Metal powder wrapped in

plastic binder

Part density can reach 95-

99%

Low cost

High quality surface

Precise complex structure

Excellent isotropic

performance

Batch production

Longer lead time for

solid/stronger parts

Nanoparticle Jetting

(NPJ)
Ti alloys

Inkjet nozzle

Metal nonaparticles

wrapped in liquid ink

High speed

Low cost

Simple and safe operation

High resolution (1 µm)

High precision and surface

finish

Low temperature

tolerance compared to

other printing techniques

Inkjet 3D Printing/

Binder Jetting (3DP)
Ti alloys Fine water het/metal powder

Low cost

Simple and safe operation
Low precision
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Table 1 | Overview of 3D printing techniques for biometals (Ni et al.2019)
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This section provides an overview of the bio-metals in

the orthopedic field that are either currently used in a

clinical setting or under development. In section 4,

biodegradable metals are discussed. 

3. METALLIC 
BIOMATERIALS



3.1 Tantalum
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Due to the  high manufacturing costs, biomedical

applications using tantalum (Ta) were once limited,

but currently there are several applications for

porous tantalum  implants (Balla, Banerjee, et al.,

2010). New manufacturing techniques such as

Laser Engineered Net Shaping  (LENS), Spark

Plasma Sintering and Selective Laser Melting

(SLM) are capable of  creating porous tantalum

structures with a Young’s modulus between 1.5

and 20  GPa depending on the porosity (Balla,

Bodhak, et al., 2010). A major drawback is the

melting point of tantalum exceeding 3000 degrees

Celsius and therefore most of the current 3D

printing techniques cannot work with tantalum (Ni

et al., 2019). 

Compatibility

Tantalum has  excellent biocompatibility and good

chemical stability (Levine et al., 2006) and is

therefore used in the dental and orthopaedic field

since  the 1940s. Compared to identical porous Ti-

6Al-4V samples, the porous pure tantalum showed

excellent bone osteoconductive properties, higher

normalized  fatigue strength and ductility (Wauthle

et al., 2015).

Spherical Tantalum powders chemical properties (Sungail & Abid, 2020)

Lot
(ppm)

O N H C S Cr Fe Mg K Ni Na Ti W

Ta-1 829 11 20 11 <10 11 12 <1 <1 33 1 8 <1

Spherical tantalum mechanical properties (SLM)
(Sungail & Abid, 2020)

Yield strength (MPa) 285

Ultimate strength (MPa) 660

Elongation (%) 4

Vickers hardness (Hv) 237

Figure 1 | Example of Tantalum implant: TMS-

Cervical Fusion Device, Zimmer Biomet, Warsaw, 

Indiana, USA.



3.2 Titanium alloy
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Titanium (Ti) and titanium alloys are widely used as

implant material for biomedical  applications

including dental, orthopaedic implants, bone

screws and many more (Ni et al., 2019). 

Mechanical properties

Titanium  alloys have a lower Young’s moduli, 55

GPa for commercially pure titanium (CP-Ti) to 110

GPa for Ti-6AL-4V, compared to 316L Stainless

Steel (210 GPa) and Cobalt Chromium alloys (240

GPa) (Zhang & Attar, 2016). The mismatch

between Young’s modulus of titanium and cortical

bone, around 10-30 GPa, causes stress shielding

effects which may lead to complications such as

bone resorption, implant loosening and failure of

the implant (Ni et al., 2019). To obtain a lower

stiffness, many non-toxic β-type titanium  implant

materials have been developed or porous

structures have been introduced to reduce both the

modulus as well as the material weight (Zhang &

Attar, 2016). The Young’s modulus of porous Ti-

6AL-4V can be as low as 2.5 GPa which is close to

the human cancellous bone (Li et al., 2009).

Compatibility

Titanium is known for its excellent biocompatibility,

corrosion resistance and hight strength (Elias et al.,

2008). Furthermore, porous titanium implants are

capable of bone ingrowth by supporting the natural

growth of human bone cells, has an  attractive

surface morphology for cell attachment and

proliferation providing a  strong connection

between the implant and bone (Tan et al., 2017).

For commercially pure titanium (CP-Ti)
fabricated by SLM (Zhang & Attar, 2016)

Yield strength (MPa) 555

Ultimate strength (MPa) 757

Elongation (%) 19.5

Vickers hardness (Hv) 261±13

For Ti-6AL-4V
fabricated by SLM (Zhang & Attar, 2016)

Yield strength (MPa) 1110

Ultimate strength (MPa) 1267

Elongation (%) 7.28

Vickers hardness (Hv) 409

Figure 2 | Example of Titanium alloy implant: 

Modulus XLIF, Nuvavisve, San Diego, California 

USA



3.3 Cobalt-Chromium alloy
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Cobalt-chromium  (CoCr) alloys have excellent

corrosion, wear and high temperature

resistance  combined with excellent mechanical

properties and outstanding biocompatibility,

suitable for almost any load bearing or dental

application (M et al., 2015; Ni et al., 2019).

Mechanical properties

The Young’s modulus of Cobalt- chromium, around

220-230 GPa, alloys is around twice than  that of

Titanium alloys. With LENS CoCrMo alloy samples

can be manufactured with a total porosity between

10-18% with a corresponding Young’s modulus of

30-43 GPa (España et al., 2010). 

Compatibility

Excellent results on the microstructure, mechanical

properties, corrosion behaviour and

biocompatibility were also found for samples

prepared by SLM (Ni et al., 2019). In vitro

experiments showed that CoCrMo alloy are non-

toxic and  retain their biocompatibility after AM

(España et al., 2010).

Cobalt-chromium alloy SLM (Song et al., 2018)

Yield strength (MPa) 800-850

Ultimate strength (MPa) 1070

Elongation (%) 7.2

Vickers hardness (Hv) 37.5-40

Figure 3 | Example of Cobalt chromium implant: 

Dental Implants, 3D Systems, Rock Hill, South 

Carolina, USA.



3.4 Nitinol
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Nitinol or  nickel-titanium (NiTi) is commonly used

as a shape memory alloy due to its good  super

elasticity, shape memory effect, low stiffness,

biocompatibility, superb wear resistance, high

strength, excellent ductility and good corrosion

resistance (Chekotu et al., 2019).

Mechanical properties

In the  martensitic condition, the Young’s modulus

of NiTi alloys (28-41 GPa) closely match of human

cortical bone which is around 20 GPa. (Bernard et

al., 2012). At a porosity of 58%, the Young’s

modulus was reduced to 9 GPa (Sabahi et al.,

2020). The 0.2 proof stress (MPa) decreases with

the relative density from 971 MPa for 98% relative

density to 368 MPa for 80% relative density

(Bernard et al., 2012).

SLM processed NiTi/Ni50.2Ti (Elahinia et al.,
2016)

Plateau start (Mpa) 148-168

Yield strength (MPa) 1400-1420

Ultimate strength (MPa) 3209-3469

Elongation (%) 37-42

Vickers hardness (Hv) 540-735

Figure 4 | Example of Nitinol implant: Continuous 

compression implants for trauma applications, 

Johnson & Johnson Medical, New Brunswick, New 

Jersey, USA.

Compatibility

Excellent corrosion resistance has been demonstrated for NiTi alloys, comparable with titanium and

Ti-6AL-4V materials, which can be explained by the addition of a Ti-oxide film on the surface

(Dadbakhsh et al., 2016). Furthermore, SLM made NiTi porous structures confirm osteogenic cell

activity of stem cells even in a salty environment or controlled compression loading (Dadbakhsh et

al., 2016). Besides an improved permeability, porous NiTi alloys exhibits superior mechanical

compatibility with bone compared to other biocompatibility metals (Dadbakhsh et al., 2016).

Therefore, AM-produced NiTi biomedical applications can be designed and manufactured with

maximal biomechanical and physiological compatibility for each patient (Dadbakhsh et al., 2016).

However, an excessive amount of Nickel (Ni) may result in toxicity affecting the biocompatibility of

the material (Khoo et al., 2018).



3.5 Stainless steel 316L
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Due to its  low costs compared to titanium and

cobalt chrome, Stainless steel 316L is often used

as a material to manufacture dental implants,

orthopaedic implants for hip and knee

replacements, or bone tissue engineering scaffolds

(Cosma et al., 2020). This type of stainless steel

has an extra low carbon content and an increased

concentration of chrome and nickel making it more

durable against corrosion.

Compatibility

One of the  main limitations of austenitic stainless

steels when clinically used is the tendency  to

corrode when implanted. The corrosion products of

stainless steel and their deleterious effects in

several organs and tissues have been

demonstrated in the past (Martinesi et al., 2007).

The corrosion resistance of these alloys is based

on the formation of a protective film and the

quantity of released metal ions, which can be

improved by means of surface treatment

(Martinesi et al., 2007)

SLM-processed 316L samples (Cosma et al.,
2020)

Yield strength (MPa) 590-780

Ultimate strength (MPa) 640-840

Elongation (%) 10-13
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Treatment of bone defects with permanent implants is

yet one of the challenges in orthopedic surgery, as the

current clinical solutions can be associated with long

term complications such as infection, wear or failure.

These complications potentially can be minimized by

implanting bio-materials which degrade over a certain

period of time. 

This section provides an overview of applicable 3D-

printed biodegradable metals in the orthopedic field. 

4. BIO-
DEGRADABLE 

METALLIC 
BIOMATERIALS



4.1 Magnesium
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Magnesium (Mg) alloys has similar biomechanical

properties as the human bone and therefore

minimizes the amount of discomfort compared to

the use of stainless steel or titanium. Furthermore,

magnesium is absorbed by the human body, 

releasing magnesium ions to enhance the

proliferation and differentiation of osteoblast,

stimulating bone growth and healing (Witte et al.,

2007). However, compared to other bio-metals,

magnesium alloys are very difficult to process

using AM techniques due to their flammability.

Mechanical properties

The density of Magnesium is only 1.74 g / cm .

The ultimate tensile strength of pure Magnesium is

around 90 MPa which can be increased to 200-300

MPa while using Magnesium alloys (Friedrich &

Mordike, 2006). The Youngs modulus of pure

Magnesium alloys is around 36 GPa but can be

increased for magnesium alloys up to 63 GPa

(Friedrich & Mordike, 2006). 

Compatibility

Due to their similar density, magnesium alloys

have the best biomechanical compatibility with

bone and consequently also a minimum associated

discomfort compared to stainless steel or titanium

alloys (Ni et al., 2019). However, despite the

excellent mechanical properties of Mg-Al based

alloys, aluminium is known to be harmful to

neurons and osteoblast, especially at higher

concentrations such as in AZ91 (Chen et al., 2014).

3

Magnesium aluminium alloys (AZ91)

Yield strength (MPa) 290

Ultimate strength (MPa) 417

Elongation (%) 9.45

Figure 5 | Example of Magnesium implant: Magnezix 

CS - Syntellix, Hannover, Germany

Magnesium zinc alloys (ZK60)

Yield strength (MPa) 235

Ultimate strength (MPa) 315

Elongation (%) 8

Magnesium silicon alloys (Mg-Si alloys)

Yield strength (MPa) 52

Ultimate strength (MPa) 152

Elongation (%) 9.5

Magnesium zirconium alloys (Mg-Zr alloys)

Yield strength (MPa) 60-125

Ultimate strength (MPa) 200-290

Elongation (%) 14-38



4.2 Zinc
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Zinc (Zn) has gradually replaced iron and

magnesium alloys to be used to fabricate

biodegradable medical implants due to its almost

ideal degradation rate. Because zinc is one of the

indispensable trace elements in the human body, it

is involved in several processes in the human body

such as tissue regeneration.

Mechanical properties

The Young’s  modulus of solid zinc parts with a

density of 99,5% produced by SLM are around 23

GPa (Wen et al., 2018). Furthermore, the yield

strength, ultimate strength and elongation were

also superior to samples produced by conventional

manufacturing methods (Ni et al., 2019).

Compatibility

Although recent studies have shown that Zinc has

a proven antibacterial effect and that the toxicity of

zinc is neglectable, there are still concerns about

the use of Zn metal as an implant material (Ni et

al., 2019). Zinc plays an essential role in the

formation of bone by stimulating osteoblasts and

inhibiting osteoclasts from differentiation (Yang et

al., 2020).

SLM processed Zinc samples (Wen et al., 2018)

Yield strength (MPa) 114

Ultimate strength (MPa) 134

Elongation (%) 10.1

Vickers hardness (Hv) 42

Figure 6 | Example of metal stent made of  Zinc  

https://www.mddionline.com/stent-designers-think-

zinc



Future Challenges
At this moment only a few well-established materials are available for 3D printing such as titanium

alloys, stainless steel and Cobalt Chromium, indicating a clear need for more high-quality materials

that can be used for printing. However, there are more specific quality requirements for raw

materials compared to solid materials. Examples of such requirements are particle size, size

distribution, uniformity, oxygen content and fluidity of the raw material which need to be

controlled.

New materials also need to meet biological requirements before they can be used in a clinical

setting. For each material it is necessary to consider the safety, biocompatibility, degradation

performance, and biological activity before and after printing to meet the requirements for

industrialization and clinical use. However, there is a lack of standardization of the biosafety of bio-

metals used for 3D printed medical applications, which makes it difficult to release new materials.

There are unlimited possibilities of new technologies to be made using 3D printing. One of the key

challenges is to discover these possibilities and find out where 3D printing can be used and

improve current treatments and develop new products or solutions. 

Future Challenges | Page 16
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